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The controlled oscillatory and rotational motions of a rigid body on a plane-parallel bifilar suspension are investigated. The 
controlled object, the relative position of which can be regulated, is connected to the body. The vectors of the acceleration or 
the rate of displacement of the object with respect to the body. The vectors of the acceleration or the rate of displacement of 
the object with respect to the body are used as the control functions. The values of the control functions are assumed to be small 
compared with the gravitational forces, which enables a small parameter to be introduced into the dimensionless variables. Specific 
regions of constraints (a rectangle, ellipse, or an inclined segment) are considered. Using asymptotic methods, a solution of the 
first approximation is constructed for the problem of the optimal control of the oscillation and rotation energies of the system. 
The case of small oscillations and fast rotations are investigated separately. The qualitative features of the controlled motions 
of a bifilar pendulum are established and commented on. © 2004 Elsevier Ltd. All rights reserved. 

The construction, investigation and optimization of controlled motions for pendulum-type rotational- 
oscillatory systems are of considerable practical interest in problems of the functioning of instruments, 
aerospace tether systems, lifting-transport mechanisms, attractions, etc. (see [1, 2] and the bibliography 
given there). In practice, various methods of control can be implemented: external - by means of a 
force and/or the moment of forces about a fixed axis [1], inertial - by controlled displacement of the 
suspension point [1, 2], parametric - using a regulated change in the length of the suspension [2] or 
relative displacement of internal masses [2-4], etc. 

In this paper we investigate the problem of time-optimal control of the plane oscillations and rotations 
of a pendulum-type system - a rigid body on a plane-parallel bifilar suspension (see Fig. 1). The control 
functions are relative displacements of the internal mass, regulated in acceleration or velocity (the 
"rotating swing" or "Czech swing" model). Note that the motions of a body on a bifilar suspension have 
specific properties. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

To fix our ideas and for simplicity we will consider a symmetrical form of the suspension using absolutely 
rigid rods of the same length I (see Fig. 1). The rigid body M can have an arbitrary mass distribution. 
The fixed hinges of the suspension are connected to the horizontal axis X and of an inertial system XY; 
the distance between them is d. The distance between the mobile hinges on the body M is also equal 
to d, so that the motions of the body are transnational. The rods which successively connect the hinges 
form a parallelogram. The centre of mass M of the body and all its points move along circles of radius 
1 with fixed centres in the XY system. These motions and orientations of the axes of the rods relative 
to the vertical Y are defined by the angle cp. 

We will further assume that the body M is the carrier and the carrier object of mass m is connected 
to it by holonomic non-stationary constraints. This object (in particular, a point mass) mass perform 
relative transnational motions. To describe the displacements we will introduce a system of coordinates 
xy, connected with the body, the x axis of which passes through the points of the mobile hinges, while 

tPrikl. Mat. Mekh. Vol. 68, No. 5, pp. 793-806, 2004. 
0021-8928/S--see front matter. © 2004 Elsevier Ltd. All rights reserved. 
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Fig. 1 

the left hinge is the origin. In this system the point M (the centre of mass of the carrying body) is fixed 
and has constant coordinates Xm, Ym, while the centre of mass m of the mobile object is described by 
the coordinates Xm, Ym, i.e. by the vector rm, which can vary with time t under the control [2, 4]. 

The coordinates XM, YM and Xm, Ym of the points M and m in the inertial system XYcan be represented 
by the expressions 

X M = l s i n q ~  + x M, YM = - ICOSCp + YM, 1, XM, YM ---- c o n s t  
(1.1) 

X m = lsin~o+x, Ym = - lcoscp+y,  xm=-x, ym=--y 

which are independent of the parameter d. To simplify the notation the subscript m, indicating the mobile 
point, will henceforth be omitted. By differentiating expressions (1.1) we obtain the components of the 
velocities, on the basis of which we can calculate the kinetic energy K of the system, taking into account 
the total kinetic energy K, of the rotational motions of the suspension rods 

I .  , 2 . 2  1 .2  
K = K M+ g m + K~t, K M = ~Ml  ~ , Ka = ~I 9 

1 2 2 
K m = .4ra(l (p + 2l(pv n + v2),- 1) n = ~eostp + psincp, 1)2 = .~2 + ))2 

(1.2) 

here I is the total moment of inertia of the rods (with the counterweights, see below) about the fixed 
hinges, and 3) n is the component of the relative velocity vector v of the point m, normal to the rods. To 
construct the equation of motion we must obtain the potential energy W and the Lagrange function L 
of the system 

W = W M+W,,,+W~t,  W M = M g Y  M, W m = mgYm, W~t ---~tgl~tcos~0 

1 . ,  .2  . .  1 2 
L = K - W  ~1 q~ + m t ~ v  n I* = +~rao - W ,  = ( M + m ) 1 2 + l  

(1.3) 

In expressions (1.3) we have used representations (1.1) for YM and Ym and (1.2) for K. 
Note that the kinetic energy Kis a homogeneous quadratic form of the variables (0, k,)~. The potential 

energy W~t (1.3) of the elements of the suspension is determined by the total mass ~t and the reduced 
arm of the gravitational forces I,, which can take both positive and negative (or zero) values due to the 
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presence of the counterweights. For simplicity we will assume that the distributions of the masses of 
the rods and the counterweights are such that the centres of mass lie on the axes connecting the points 
of the movable and fixed hinges. The potential energy Wm (1.3) of the point m is determined by the 
generalized coordinate q0 and the variable quantityy, as given by (1.1). 

We will further assume that the relative motion r(t) of the point m, i.e. the functionsx(t) andy(t) are 
given. Neglecting possible perturbing factors, using the Lagrange function L (1.3) we obtain the equation 
of motion 

/l~+v2sintp = -'twn, w n = J/cosq0+ysing, w t = -Jisintp+ycosqo 

"~ = ml/ l*,  v 2 = g(Ml+ml+Bl~ t ) / l* ,  v 2 > 0  
(1.4) 

Here wn and wt are the components of the vector of relative acceleration w of the point m, normal and 
parallel to the axes of the rods, respectively, and v is the frequency of small oscillations of the bifilar 
pendulum when Wn =- O. Equation (1.4) is identical in form with that obtained for a physical pendulum, 
the suspension point of which moves [1, 2]. It is natural to consider the functions £(t) andS(t) as control 
functions. Then, for the system described by Eq. (1.4) we can formulate and investigate interesting 
problems of the optimal control of the oscillatory and rotational motions. Using standard methods of 
the theory of optimal control, the variables % ~0, x, £, y, p can be subjected to the required change by 
changing control functions £, ~, i.e. the vector w of the relative acceleration of the point rn. 

The situation often arises in practical problems when the relative velocity v of displacement of the 
internal mass m (or the velocity of the suspension point [1, 2]) may change practically instantaneously 
in a certain limited region. This leads to impulsive controls and requires the development of special 
methods of solving the corresponding non-linear control and optimization problem. Impulsive controls 
lead to a discontinuous (piecewise-smooth) function q0(t), but the function q~(t) will be continuous and 
piecewise-smooth with corner points (absolutely continuous). For the system considered, this difficulty 
can be overcome by introducing the Hamiltonian variables (% [3) 

3 L _  
- O(p l*(p + ml1) n 

~2 ml (roll)n) 2 
H = L = 21--';- 7 ;l 1)n + a t*  

m l) 2 

2 
- -  + W(q~,  y )  

(1.5) 

Here [3 is the generalized momentum (the angular momentum), and H is the Hamilton function of 
the system. The equations of motion do not contain generalized (impulsive) functions and have the 
form 

~ . ~ m l  
~0 = H i = - ~-g o n, o n = ~cosq) + 3)sin~0, 1)t = -~sin9 +/9cosq~ 

(1.6) 
! 

[~ = -H~ = -v2I*sin~0 + (ml/l*)~1) t -  (me12/I*)1)n1)l 

For system (1.6) it is natural to take the function £(t) and)~(t) as the control functions, these can be 
piecewise-continuous, in particular bang-bang. The quantity vt has the meaning of the tangential 
component of the vector of the relative velocity, i.e. the projection of v onto the axis of the rod. 

Note the main properties of the motion of a bifilar pendulum, described by the equations in Lagrange 
form (1.4) and Hamilton form (1.6). When wn - 0, i.e. w -= 0, Eq. (1.4) has a first integral of the standard 
form 

= ~ i , 9 2 _  g(Ml  + ml + Ix/~t)cos< p = const (1.7) E 

which characterizes the total energy of the oscillations or rotations of the pendulum without taking into 
account the quantity mgy in Wm (1.3), where y = y0 + )~0t. Using integral (1.7), the equation can be 
completely integrated in elliptic functions [1, 2]. If we put)~ = 0, the function E + mgy, y = const, will 
also be a first integral. 

When v -- 0 system (1.6) has a first integral of the form (see (1.5)) 

= 1 ~ 2 / I *  + W(~0, y) = const (1.8) H 
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sincey = y0 = const. Using relation (1,8), this system can be completely integrated in terms of elliptic 
functions. 

The quantity H represents the total energy of the oscillations or rotations of the pendulum, taking 
the term mgy into account. 

The solution and investigation of problems of control of motions of a non-linear oscillatory system 
will entail well-known analytic and computational difficulties [1, 2]. These increase considerably when 
complex constraints are imposed on the control w or v, taking into account the phase constraints, for 
example, on the admissible positions r(t) of the point m, i.e. the coordinates x( t ) ,  y ( t ) ,  and also when 
additional requirements are imposed on the final values of r and v. For applications, however, it is of 
considerable interest to construct simplified locally optimal [1] or quasi-optimal [1, 2] modes of control, 
which have a clearly expressed resonance form. The corresponding excitations must, in a certain sense, 
be weak, so that in a time interval equal to the period of the oscillations of rotations, a relatively small 
change occurs in the main parameters of the motion, for example, the energy, the oscillation amplitude, 
the rate of rotation, etc. In long intervals, containing many (in practice, several) periods, a considerable 
change in these characteristics of the motion of the pendulum (and of the mobile object) must occur 
that is quasi-optimal in the sense of a specified performance criterion. 

This approach involves the use of asymptotic methods of optimal control [2], based on the maximum 
principle [5] and methods of separating motions (averaging) [6, 7]. Below we propose to use this approach 
to solve time-optimal type problems when controlling the rotational-oscillatory motions of systems (1.4) 
and (1.6). Typical regions (limitations) of the admissible values of w and v are considered: a rectangle 
(in particular, a square or a segment), an ellipse (in particular, a circle) or line segments, inclined at 
an arbitrary fixed angle to one of the coordinate axes. A numerical parameter is further introduced 
and the controlled systems are reduced to standard form [1, 2]. 

2. THE R E D U C T I O N  OF THE C O N T R O L  P R O B L E M S  
TO STANDARD F O R M  

To give the equations of motion of a dimensionless form with a small parameter we will introduce the 
argument 0 and the unit of length p as follows: 0 = vt, x = p~, y = prh where ~, q are dimensionless 
relative coordinates of the point m, while the quantity p is chosen from additional conditions. The main 
requirement is that the control functions must be relatively small [2]. 

Thus, in the case of Eq. (1.4), as a result of these changes of variables, we obtain 

+sin~o =- sw, , ,  e ='~p, O < E ~  1 

w. = ~cosq)+qsin~0 (Iw.l,l l,l l- 1) 
(2.1) 

The dots once again denote derivatives with respect to the argument 0 = vt. The function w n (2.1) is 
obtained from Wn (1.4) by dividing by pv 2 (the old notation is retained here). The smallness of the 
numerical parameter e is ensured by the ratio mlp/ I*  ~ 1. A representation of Eq. (1.4) that is similar 
to (2.1) is obtained by introducing, instead of p, the unit of acceleration b. Then the parameter e = 

2 2 7b/v and, in particular, e = Tl when b = lv ,  while the function Wn in (2.1) is obtained by dividing the 
initial one by b. 

For system (1.6), by making the parameters dimensionless, we obtain the expressions 

= Z - e v , ,  X = 13/(l'v), 

= - sin~0 + e g v  t - E21)nl)l , 

e = TP = m l p l l *  ~ 1 

u n = ~ e o s 9  +'qs ing,  o t = - ~sin9 + fl cos9  
(2.2) 

Here Z is the normalized momentum, and the dimensionless components [~n [, [ vii - 1 (the old notation 
is retained for these). The quantities ~)n and l) l are obtained by dividing the initial quantities by pv. If, 
instead of the unit of length p we introduce the unit of velocity v, the small parameter e = 7u/v and, 
in particular, e = 7/when aJ = lv. 

Equations (2.1) and (2.2) are reduced to the standard form of weakly controlled systems with rotating 
phase [1, 2]. We take as the slow variable the total energy E of the oscillations or rotations of the system 
(ignoring the quantity rl, see above), due to the variables q~, ~0 for (2.1) and % Z for (2.2), respectively, 

1 2 +  E = ~ 0  2 + l - c o s ( p ,  E = ~Z 1 -coscp  (2.3) 
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The relation between q0 and E, V (~  is the phase of the unperturbed oscillations or rotations) is given 
by elliptic integrals [1, 2]. However, henceforth this will not be required, since when solving control 
problems in the first approximation in the parameter e, averaging of the equations over ~t is carried 
out using integrals (2•3). The equation of the first approximation for E (after dropping quantities O(e 2) 
in the case of system (2.2)) is 

/~ = e ( f ,u ) ,  f = f~(qh(o), u = w; f = fo(~o,Z), u = v (2.4) 

The structure of the vector-function f (2.4) is determined by the type of control with respect to the 
acceleration (2.1) or the velocity (2.2). To simplify the operation of maximizing the corresponding 
Hamilton function of the problem of time-optimal control it is assumed that the regions U of admissible 
values of u s U have the form of a rectangle U (1), an  ellipse U (2), or  an inclined segment U (3). 

U (1) = {Um (Ul, u2)T: lUll _<al, luzl < a 2 }  , al, 1 = c o n s t  

U <z) = {u = (u 1, u2)r: (ul/al)2+(u2/a2)2< 1}, al, z = cons t  

U ¢3) = {u = (u i, u2)r: u I = u c o s S ,  u 2 = u s i n S ,  lul _<a}, a, 8 = c o n s t  

(2.5) 

The components u 1 and i12 can be specified in various systems of coordinates. We will consider two 
methods: in a system xy connected with the body and in a system nl, which rotates, together with the 
rods, by an angle ~p (see the figure) namely 

= - (i) U = w o (~,fl)r--fwx, Wy) T, U = V o = (~,fl)r--=fvx, l)y) T, U~ U o 

= - ( i )  i = 1 , 2 , 3  U ..~ W~ (Wn, Wl) T, u = v¢m(%,,vt)  T, u ~  U¢ ,  
(2.6) 

Expression (2.6) have a clear geometrical content. 
Hence, by representations (2.5) and (2.6) there is a correspondence Ul = wx, u2 = Wy o r u l  = Wn, 

u2 = Wl for the region U0 or Uq0 respectively; similarly ul = a)x, u2 = a)y. or ul = Vn, u2 = Vl. 
The components Wn and Wl of the vector w~ are defined in (1.4), whale ~n and a)t of the vector v~ are 

defined in (2.2)• Using expressions (2.1) and (2.2) for the components of the vector fw and f~, we obtain 
the expressions 

• 2 T  
fwo = (-(ocostp,-(osincp) r, fv, = (-smtp, Z ) 

2 T 
fuo = ( - ( Z  2 + eosg~)s ing~,  Z 2 c o s g ~ -  s in  q~) , f w ,  = ( - ~ ,  O) r 

(2.7) 

The relation between the variables ~, 2 and E, q0 is specified by the change of variables (2.3). The 
dependence on the phase ~ is implicit (in terms of elliptic functions and integrals). The equation for 
V, as was pointed out above, is not required [1, 2]. 

We will consider the problem of the time-optimal change in the energy E of the oscillations or rotations 

E(0) = E °, E(O/) = E f, 0/---->rain, ue U (2.8) 
II 

according to Eq. (2.4). We will consider four types of control (2,6) and (2.7), for each of which there 
are three regions of admissible values of (2.5) (altogether 12 versions of the control problem)• Note 
that the number of control modes is doubled (and equal to 24) due to the different description of the 
motion in the oscillation and rotation states. Hence, a detailed solution for all cases, which may only 
differ slightly, is hardly reasonable. In its theoretical and applied aspects, it is of interest to investigate 
the main properties of the controlled motions, and also to set up different control procedures. 

In addition to the energy (or amplitude), with the appropriate conditions, we can take as the slow 
control variables the relative velocity v (for system (2.1)) or the relative position r (for (2.2)). These 
problems are extremely difficult to solve effectively, Hence, at the initial stage we will confine ourselves 
to investigating the simpler control problems (2.4)-(2.8). We can then determine the values of these 
additional variables and correct them without any appreciable change (in limits of the error of O(e)) 
in the main variable [2]. 
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It is of considerable interest to represent the mechanism for controlling the oscillations and rotations 
of a bifilar pendulum due to displacement of the mass m along a fixed fairly smooth curve x = x(s) ,  
y = y(s) ,  including a closed curve. It is natural to take the acceleration ~ or the rotate of change k of 
the parameter s of this curve as the control function for system (2.1) or (2.2) respectively. These problems 
require a separate discussion. 

3. C O N T R O L  OF THE M O T I O N S  BY MEANS OF 
R E G U L A T E D  A C C E L E R A T I O N  

Consider problem (2.4)-(2.8) with u = w, i.e. u = w0 ~ U~ i) or u = w~0 ~ U~ ), according to the 
corresponding expressions (2.6) and (2.7). Its approximate solution with a relative error of O(e) is 
constructed using asymptotic methods of optimal control [1, 2]. It can be shown that the quasi-optimal 
control is locally optimal: 

w *  = - t ~ a r g m a x ( f  w, w ) ,  w ~ U,  t~ = s i g n ( E -  E f) (3 .1)  
w 

The components of the vector function fw are defined in (2.7). The required control is obtained in the 
form of a synthesis, i.e. by the feedback principle, and requires highly accurate continuous measure- 
ments of the variables 9, ~. The expression for w* (3.1) can be constructed in explicit form for the regions 

('! 2 (1? U 0 ~ ( .5 ) .  The region U 0 ~, which has the form of a rectangle, leads to the functions 

* algsign(~0cos~0), w~ a2osign(gsin~0), w * e  U(0 l) 
0) (3.2) 

* = a l a s i g n ~ 0 ,  - a  2 _ < w ? < a  2, w * ~  U ,  W n 

According to relations (3.2) the control wTcan be arbitrary within acceptable limits, since the equation 
of motion (2.4), as follows from expressions (2.7), is independent of wl. Moreover, in the case of the 
limitation ~ )  the control w* is equivalent to a constrained torque about a fixed axis [1, 2]. 

As in the case of an elliptic region U (2) (2.5), from relations (3.1) we obtain the expressions 

* nya2tYsign~0, W *  ~ " (2) w x* = nxalasign ~, Wy = u o 

n x = h f fh ,  ny = hy/h,  h~ = alcos 9, hy = a2sinq0, h = Ihl 

T/( 2 ) * = air, sign ~, w~' -0 ,  w * ~ _ ~  W n  

(3.3) 

Here nx and ny are components of the unit vector. As above, the control w* ~ U(ff ) is equivalent to a 
constrained torque, In the special case of a circular region U(02) (where al = a2 = a) the vector w* is 
directed along the normal to the axes of the rods, i.e. collinear with the vector w* ~ U(ff ), while the 
control is equivalent to an axial torque. 

The situation when the control vector u ~ U(~!~ (2.5), i.e. the acceleration of the object m makes a 
constant angle rt/2 - 8 with the y and l axes, is extremely interesting from the theoretical point of view 
and useful in practice. It leads to the following expressions for the feedback control 

* = aas ign(~eos(q)-  8))sin5 * = at~sign(~cos(q)-6))cos& Wy W x 

. (3) (3 .4)  w n* = a6sign~olcos(q)-8)l, 181 - <re/2, w* ~ u 0 

. (3) * = aosign~0cos& w? = aasintpsin& w*E u~ W n 

The effectiveness of the control u ~ U (3) depends very much on the angle 5, particularly for small 
I 01 (see expressions (3.4) and below). Moreover, when w* e U(~ 3), the control is equivalent to a simple 

version of the control by means of a constrained torque, as is the case also for other constraints (see 
(3.2) and (3.3)). 

An approximate investigation of the time-optimal change in the reduced energy E of the oscillatory 
or rotational motions of a pendulum can be carried out using Eq. (2.4), averaged over the phase % 
after substituting the expressions f = fw0 (% qb) (2.7) and w = w* (tp, qb) (3.2)-(3.4). Here the variables 
q0 and tp are assumed to be expressed m terms of E and V in accordance with the change of variables 
corresponding to the unperturbed motion (e = 0), which can be represented using elliptic functions 
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and integrals [1, 2]. This approach is extremely difficult to use; it is justified in the case of small (quasi- 
linear) oscillations. In the general case of non-linear oscillations and rotations, it is more effective to 
use the procedure of averaging the right-hand side "along the unperturbed trajectory" [1, 2, 7], i.e. using 
the relation dO = dq)/(p and subsequent integration over q~. The averaging scheme has the form 

2~ T 

0 0 

1 , 1 = . ,  ~,~w *d9 ~ W(E) ~ [ w ,  ~0d0 = (3.5) 

Depending on the mode of motion (oscillations for E < 2 or rotations for E > 2) the expressions 
for the period T(E) and the integral over the closed contour (3.5), corresponding to the phase trajectory 
q~ --- qb0 (E, ~p), have different representations. For example, in the oscillation mode, the following 
formulae are obtained. 

[ w .   Oo) - "± 90 --" 4t2( E - 1 + cosq~) u2 

-cp 0 

T = To(E ) = 4K(ku), k u=-4~~, O<k U<l 

E < 2 ,  90 = ~00(E) = a rccos (1 -E)  

(3.6) 

Here K(k) is the complete elliptic integral of the first kind with modulus k = k~; the value for the 
amplitude 90 is taken in the first two quadrants: 0 < ~00 < r~ (0 < E < 2). The quadratures (3.6) are 
found in terms of elementary functions or elliptic integrals. Quasi-linear oscillations (k~ ~ 1) lead to 
much simpler expressions [1, 2]. 

In the rotation mode, we have the following formulae 

+2~ 

I w:(,p, q)o)dq~, T = Tr(E ) = 2krK(k,. ) 
0 (3.7) 

k , = 4 ~ ,  0 < k r < l ,  E > 2 ,  ~00~>0, Iq ' l<~ 

The signs ___ correspond to positive or negative (counter-clockwise or clockwise) rotational motion 
of the body M (rotations of the rods). To fix our ideas we will consider the case of positive rotations 
(the plus sign). The quadratures (3.7) can be calculated in terms of elementary functions or elliptic 
integrals. In the case of fast rotations kr ~ 1 (E ~> 1), expressions (3.7) are simplified considerably. 

As as result, according to relations (3.5)-(3.7), the averaged right-hand side of the equation for E 
(2,4) is expressed in terms of elliptic integrals and elementary functions, containing the unknown E. 
This enables a "slow time" to be introduced - the argument z = e0, which enables the variables E and 
x to be separated and enables approximate values of the functional (the optimal time of motion) and 
the energy to be determined with a relative error of O(e) 

e Z' 
d~ ,£f dE . .  

x = ~ W(;) '  = e0y = f W(E)' w(e)  = (w,, q~o), (3.8) 
go go 

Note that the sign of the function W(E) is the same as the sign of the different E - E ° ~ 0. The relatively 
simple case mentioned above, which leads to a constrained equivalent torque (see (3.2)-(3.4)), is 
described in the oscillation and rotation modes by the functions W. and Wr respectively 

Wo(E ) = _Tosign( E _  EI)(K(  E ~  ))-l arccos(1 - E), 0 < E °, 

W,(E) =-Trsign(E-EY)( 2 ~ K (  2~) )  -1, 2 < E  °, E<** 

E < 2  
(3.9) 

Here % and Tr are numerical coefficients, determined by the values of the parameters aa and a (a 2 
has no effect on the solution). Since %:  are proportional to al or a, it follows from relations (3.9) that 
the system is uncontrollable when al = 0 or a = 0 in the first approximation in ~ considered. This fact 
is of interest from the view-point of mechanics. 
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For the general situation %, r > 0; b y  introducing the argument "c' = y~, r'C the system can be written 
in a form which does not contain the parameters. This enables us to construct a unified relation E = 
E('c', E °) [1, 2]. An analytical and numerical investigation of the controlled oscillations and rotations 
presents no difficulties, In particular, when E < 1 (quasi-linear oscillations) and E >> 1 (fast rotations) 
the functions W~, r ~ ~'E, which confirms that E depends quadratically on x'. When E - 1, particularly 
in the neighbourhood of E = 2i i.e. the separatrices in the phase plane (% 9), numerical calculations 
canbe  carried out. They also show that, on the whole, the relation E(x, E °) is "close" to the segment 
of a parabola for all x when E ° , 2; the neighbourhood E ° = 2 requires additional investigation. 

If E ---) 2, then k~r ----> 1 from below, and the periods of the oscillations or rotations Z~, r ----> oo. This 
fact makes it difficult to use and justify the averaging method [8, 9]. Moreover, the right-hand side of 
the formally averaged equation (2.4) tends to zero as E ~ 2: W(2) = 0, i.e. the rate of transition through 
the separatrice is zero. However, this singularity is integrable, which does not lead to "sticking" and, 
moreover, the error of the averaging method is a quantity O(elne -1) for 0 - 1/e. Hence, the averaging 
method turns out to be applicable for arbitrary admissible values of the reduced energy E. When 
integrating numerically in a small neighbourhood of the value E = 2, for example, when Ef = 2, one 
can use the asymptotic form [1] 

y x - - - ~ ( l +  ln[E3~_22[), y =  7O.r (3.10) 

Formula (3.10) enables one to "transfer" from the oscillatory mode to the rotational mode and vice 
versa. The unified curve E('c', 2) is constructed, and a complete solution of the optimal control problem 
is obtained in the first approximation in e [1]. 

We will briefly consider the optimum evolution of the energy E of the oscillations or rotations, when 
the regions of control variables u are specified in a system of coordinates xy connected with the body 
M as given by relations (3.2)-(3.4): w* ~ U(~ ), (i = 1, 2, 3). The expressions for the averaged right-hand (1) sides in the oscillation mode W~(E) and the rotation mode W~(E), respectively, when i = 1 (U0 is a 
rectangle) have the form 

Wv( E) = -sign( E -  Ef )(K(, fE~) )-l[al(2E- E2)U2 + a2E], 0 < E <  1 

Wt,(E) = -s ign(E-Ef ) (K(  E~)) - l [a l (2- (2E-E2)m)+a2E],  1 < E < 2  (3.11) 

Wr(E) = - 2 s i g n ( E -  EY)(al + a2)( 2 ~ K ( 2 ~ ) )  -1, E>  2 

The function W~,(E) is continuous and smooth everywhere, including the point E = 1 where 
(W~ (1 - 0) = W~ (1 + 0)). The averaged system is integrable according to relations (3.8) and (3.11) 
and can be investigated by analytical and numerical methods. Its behaviour is qualitatively similar to 
that of the system investigated above when al > 0. If a I = 0, controllability occurs everywhere except 
the rest position E = 0. This means that when E ° > 0, E f > 0 a finite time x / (3.8) is required; when 
E ° -- 0 or E f = 0 the control problem is unsolvable in the interval O f - E -1. As described above, the 
asymptotic forms of the solution when E ~ 1 (al > 0), E --- 2 (see (3.10)) and E >> 1 are investigated. 

Instead of the argument z one can introduce x' = a0x, a0 = ~ /a  2 + a 2 and construct a unified 

family of curves E(x', E*, t~), where E* is a fixed value (in particular E* = 2); the parameter ct is defined 
by the relation cos~ = al/ao, sint~ = aJao. Note that, in the rotation mode E > 2, the effectiveness of 
both components Wx* and w~ is the same and is determined by the value of the limitation al and a2 
respectively. 

We will also briefly consider the case of an elliptic region U(0 2), see (2.5) and (3.3). Averaging, according 
to relations (3.5), leads to expressions for the right-hand sides of W~,r(E) of the form 

Wo(E) = -a  l s ign (E-  Ef)(K(E~))-lF(tPo(E),  kl), a I _> a 2 

-a2sign(E-E f) K ~ -1 E.(k2) W ° ( E ' - -  ( ( 1) I - F ( ~ - o ° ( E " k 2 ) ]  ' 

2 , 2 2, -2 2 ,. 2 2, -2  
k 1 = ( a l - a 2 ) a l  , k 2 = t a 2 - a l ) a  2 , 0 - < k l , 2 - < l  

Wr(E ) = -2al ,  2s ign(E-  E/)( 2~K( 2~))-'E,(lq, 2) 

a2  >-a  I 
(3.12) 
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Here K and F are the complete and incomplete elliptic integrals of the first kind, respectively, with the 
corresponding moduli k~ r and kl,2, and E .  is the complete elliptic integral of the second kind with 
modulus kl and k2. In particular, when al = a2 = a (U~ 2) is a circle) the moduli kl,2 = 0 and we 
have the case of a torque constrained in magnitude, see (3.9) and (3.10). The qualitative features of 
the controlled motion when a I = 0 (the ellipse degenerates into a segment (-a2, a2) along the y axis) 
repeat those investigated above for a rectangular region U(01). For E ~ 1 and E >> 1 the asymptotic forms 
derived above (the quadratic dependence on x) hold; when E --- 2 the asymptotic form (3.10) and the 
commentaries on it hold. 

We will investigate very briefly the control problem in the case of the "region" U~ 3) - a line segment 
2a inclined at the angle 8 t o  the x axis. This control can be regarded as the result of the projection of 
the components Wx, y of the vector w.  s U(J ) onto this straight line, see (3.4). After averaging, in 
accordance with relations (3.6) and (3.7), expressions are obtained for W~r(E) of the form (3.11) for 
al = a lcosSl ,  a2 = a I s inSI.  Taking these representations for al,2 into account, we can carry out a 
complete analytical and numerical investigation and construct a unified family of solutions E('c', 
E*, 8). This complete solution and analysis of the dependence on ~, E °, E f o f  all the parameters of motion 
were presented previously in [1, 2]. The qualitative relation between the solutions in the case of different 
regions U(0 i) (i = 1, 2, 3) (2.5) of admissible values of the control w is of considerable interest. 

Note that the possible drift of the object m with respect to the body M can be eliminated either during 
the process of control of the oscillations or rotations or when it is completed by means of smooth (non- 
resonant) actions [1, 2]. An investigation of the more general class of problems of the simultaneous 
control of the motions of the body M and the object rn may be of interest, but it presents considerable 
computational difficulties. 

4. C O N T R O L  OF T H E  M O T I O N S  BY M E A N S  OF 
A R E G U L A T E D  V E L O C I T Y  

We will n o w  consider the less-studied problem (2.4)-(2.8) when u = v, i.e. v0 ~ U(o i) or v~ ~ U(~ i), 
(i = 1, 2, 3). An approximate solution, with relative error O(e) can be constructed using asymptotic 
methods of optimal control [1, 2], similar to the constructions in Section 3. The quasi-optimal control 
is locally optimal and is defined by the relation 

4 0  v* = - a a r g m a x ( f v ,  v ) ,  v ~  U = u0, ~, a = s i g n ( E - E  / ) (4 .1)  
v 

The vector function f~ is defined in (2.7). The required functions v 0 and v~ can be obtained in the 
feedback form and require highly accurate continuous measurements of the phase coordinates q~ and $. fl) 

For the rectangular region U~,~ (2.5), from relation (4.1) we obtain expressions for v0,~ and for the 
right-hand sides of Eq. (2.4) (the subscript ~ is omitted for brevity) 

1)x,y = -a l ,  2 ~ s i g n f  x, y, 

fx = _( 2+ coslp)sinq), 

On, l = - a l ,  2 f f s i g n f n ,  l, 

fn = -sing), f t  = X 2, 

(f, v) ° = - c ( a , lGI  + aalfyl) 
2 . 2 

f y = X cosq0-sin qo 

(f ,  v )  ~ = - o ( a l J s i n q o  I + aaX z) 

ff = s i g n ( E -  E y)  

(4.2) 

l )x ,y  = - - a l , 2 ( Y n x ,  y , 

h 0 . .  2 . 2 . 1 / 2  
= ( n x + l ~ y )  , 

l)n, I ---- - a l ,  2Onn,  I, 

h ~° (h i + 2 I/2 = h i )  , 

nx, y = hx, y/h O, hx, y = al, z fx ,  y 

(f ,  v )  0 = - f f h ° ( ~  0, Z) 

nn, l = hn, l/h ~, hn, l = al ,2fn,  I 

(f, v) ~ -~h~(cp, Z) 

(4.3) 

Expressions (4.2) are much more complex than (3.2), and a further numerical-analytical 
investigation, in particular, averaging similar to (3.5)-(3.7), is extremely difficult. The analysis can be 
simplified somewhat in the case of small oscillations ( I q0[ ~ 1) or fast rotations ( IX [ >> 1). (2) 

For the elliptic region U0,,p (2.5), the determination of the controls and the right-hand sides of Eq. 
(2.4) leads to formulae of the same kind 
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The function f0 and f~ have the form (4.2). Expressions (4.2) are extremely complex and do not allow 
of explicit averaging in terms of tabulated functions. As above, they can be simplified considerably when 
analysing quasi-linear oscillations or rapid rotations. 

For the one-dimensional region U~3~ ) (2.5) the synthesis of the approximately optimal controls (4.1) 
and the right-hand sides of Eq. (2.4) have the form 

ux, n = -ou° '~cosS ,  o y . t = - o u - ° ' ~ s i n 8  

= • O~ 
u °'~ a s l g n f .  , f ~  = fx , , )cosS+fy. ls in& (f, v) ° , ,  : _<,oliO,<,'l 

(4.4) 

In the general case, the analytic procedure of averaging is impossible in terms of known tabulated 
functions. When E - 1 the averaging can be carried out taking into account the relation )~2 = 2(E - 
1 + cosq0) and the differential relation dO = d(p/)~, similar to scheme (3.5) 

2n T 

<,, v>,,. As,,,.,,><,,., v><,o = 
o o 

(4.5) 

An analysis of the function V(E) (4.5) indicates that the qualitative features of the controlled motion 
when E - 1 are similar to those established above in Section 3 for "acceleration control". The system 
turns out to be controllable for a l lE  _> 0 if al > 0, 151 < n/2; when al = 0 or 161 = n/2 f o r E  ° = 0 or 
E f = 0, controllability does not occur in the interval x - 1 (0 - e-l). The transition of the phase trajectory 
% 2 through the separatrice E = 2 occurs according to the asymptotic form of the type (3.10). 

In the general situation one can construct unified single-parameter families by introducing the 
argument x' = a0x for (4.2) and (4.3) or z' = ax for (4.4) with the angle parameter a or 6 respectively 
(see Section 3). The case of small (quasi-linear) oscillations of the body M allows of considerable 
modification and generalization in formulating the problem, taking the relative position (x, y) of the 
object m into account. It can be investigated by asymptotic and numerical methods similar to the 
previously investigated problem of the control of the oscillations of a pendulum with velocity-controlled 
displacements of the suspension point [1, 2]. 

We will consider another limiting case of controlled motion, when I Z[ ,> 1 ("rapid rotations"), i.e. 
E - )C 2 >> 1. Expressions (4.2)-(4.4) for the control v can be simplified considerably using the perturbation 
method. One can take the quantity k = 1/E / ~ 1 as the small parameter )~, after normalising the variable 
E in Eq. (2.4). With a relative error of O@) for the controls and the right-hand sides one obtains 
representations which have a clear mechanical meaning and can be simply used for the practical control 
of a rotating swing in the case of comparatively rapid rotations. 

For a region of rectangular f o r m  U (1), instead of (4.2) we used expressions of the first approximation 
in ~ for the controls and for the right-hand sides, and also for the average (4.5), of the form 

v x = alosignsinqh Oy = -a2osigneos~0, (f,v) ° = -2oE(a l l s in~01  +azlCOS~01) 

= i10) (4.6) 1) n -= 0, 1) I = - a 2 0 ,  (f, v)  ~ - 2 a 2 o E ,  v0, ~ E '-'0, 

Vo(E) = - (4 /n ) (a  I + a2)oE, V¢(E) = -2a2oE 

It follows from relations (4.6) that for the region U(01) the controls Vx and ~y are equally effective; for 
the region U(~ 1) the control aJ1 is considerably more effective than a~n (in contrast to the case of small 
oscillations). 

Constraints in the form of the elliptic region U (2) (see 3.12)) 

v x = alohx/h, 1)y = -a2ohy/h 

h x = alsinq0, hy = azCOSq0, h = Ihl, ( f , v )  ° = - 2 o E h  

. ( 2 )  
1) n - 0 ,  1) 1 = - a2G,  ( f , v )  ¢ = - 2 a 2 G E ,  Vo,~E UO, 

Vo(E) = -(4/lg)al, EE,(kl,2)°E (a l  X a2),  V~(E) = - 2 a 2 0 E  

(4.7) 

lead to similar expressions instead of (4.3). 
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A comparison of expressions (4.6) and (4.7) for V~ shows that they are identical in the first 
approximation in ~,; the coefficient in V0 (4.6) is greater than in V0 (4.7), since the region U (1) is "wider" 
than U (2) for the same a t and a 2. Like (4.6) the controls 1)x and 1)y (4.7) possess the same effectiveness; 
the control 1) 1 is much more effective (by an order of magnitude with respect to ~,) than Vn. For the 
one-dimensional region U (3) the required expressions 

v x = aGsign(cosSsintp), Vy = -aasign(sinScostp) 

= r l  (3) (f, v) ° -2aGE(lcosSsinq~[ + [sinScostp[), v e " o , ,  
(4.8) 

o.-O, o t = -a6sign(s inS) ,  ( f ,v)  ~° = -2a6E[sinS[ 

Vo(E ) = - (4 /n)a( lcosS[  + [sinSl)GE, V,o(E) = -2alsinSlGE 

follow from relations (4.1) and (4.5). 
The functions V0 and Vq~ (4.8) are analysed and compared with the other functions V0,~0 (4.6) and 

(4.7) in the same way as above. 
The averaged equations can be integrated in an elementary way 

E = E ° e x p ( - c 6 ° x ) ,  x f =  c-~[ln(E°/EI)l, G°= s ign (E ° -E / )  (4.9) 

The coefficient c in expressions (4.9) takes different values, corresponding to expressions (4.6)-(4.8). 
A qualitative feature of the controlled motions of the system under rapid rotation conditions by means 
of a regulated change in the relative velocity v is the exponential change of the energy E with time. 
This fact has not been pointed out previously, although corresponding equations of the controlled motion 
of a pendulum with a regulated suspension length were obtained in [4], from which this qualitative 
conclusion follows. Note that, in the case of oscillations, it is possible to obtain a parabolic law of the 
change in the energy with time; on passing through the separatrice this law is close to a linear function 
of time. Moreover, it follows from relations (4.6)-(4.8) that the mean (v0)~, = 0, i.e. the relative drift 

(i) -- (i) of the object m with respect to the body M is small for the control v0 e U0 • The control v~ ~ U~ leads 
to a considerable relative displacement, which may be unacceptable when solving applied problems. 
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